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&s&a& The glywhhe inhibitor l-deoxy mnnoonojifimycin (l,Sdkieoxy-l,Smino-D-mmmitol) w.9 
synthc3ilsdinfoorsimple~fromarcroa4 via 6.6’diuido-6,6’dideoxym1cm~e aud 6¶zido-6&oxy-D- 
fiuctohu;mose. T%e ‘isonwic balhst” of the seqwnce. 6-&b+deoxy-D-ghcose, could be pertUy converted 
into 6-axido-6deoxy-P with the eid of gl- isomeram (E.C. 5.3.1.5) dcamM&q l novel 
~~ofthircazymsIberequsoce~lccastorrmlti~~ti~ofl_dsoxy- 
mumooojhimycio in over 30% overall yield without the need for expawive reaga~ts xod protahg group 
BnnipuletioM. 

I-Beoxymannonojirimycin (1,5dideoxy-1,5-imino-D-mannitol, l), a natural product first found in 

the legumes Lcnchocatpur sericeus and L. costaricensid, is an inhibitor of several mannosidases2, 

amongst them mannosidases 1A and 1B of glycoprotein processing3, an efficient inhibitor of mammalii 

ar-fucosida&, and thus a valuable tool in biochemical research. 

For syntheses of 1, D-mamKX&5 and Dgluco~ h.6 have been the most frequently employed 

starting materi&. However, L-gulonolactone7, (s)-pyroglutamic acid*, and other compounds9 have also 

been used. Chemoenzymatic approaches have been published by three group&tc~tr, two of them taking 

advantage of an enzymatic aldol reaction t”*tl. Of the reasonably efficient syntheses the numbers of 

synthetic steps lie between 6 and 14 with overall yields ranging from 5 to about 25%. The best overall 

yield to date (35% over 11 steps) was reported by Fleet and coworker@ for a synthesis of 1 from 

1,2;5,6di-0-isopropylidene-u-D-glucofuranose. 

In context with a project concerned with the synthesis of biologically active derivatives of various 

glycosidase inhibitors we were interested in a simple approach to 1 allowing relatively quick access to 

multigramm quantities without the need for expensive reagents such as trifluoromethanesulfonic 

anhydride. Based on the pioneering work by Paulsen and coworker@ 6-azido-ddeoxy-D-fructofuranose 

had already been successfully usedto~tt as an intermediate for the synthesis of 1. Consequently we turned 

our attention to sucrose (2) as an inexpensive, abundant source of D-fructose, the latter already protected 

at the anomeric centre and as the required 2,5-furanoside to allow access to C-6. 
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Glucose isomerase HOCHZ 

E.C. 5.3.1.5 HO 

Commercially available sucrose 2 (51 g, 150 mmol) was treated with triphenylphosphine/ 

tetrachloromethane in pyridine employing the method of Anisurxaman and Whistlerls, to give 6,6’-di- 

chloro-6,6’-dideoxysucrose (3)13*14, albeit as a syrup. The yields in our experiments ranged between 65 

and 7596, unfortunately never reaching that (92%) previously reported for this reaction. Reaction of 

sucrose derivative 3 with sodium axide in NJVdimethylformamide (DMF) led directly and without the 

need for protecting group manipulations to the known 6,6’-diido-6,6’dideoxysucrose (4)t4J5 in 81% 

yield (57% for both steps). This product was quantitatively hydrolyzed with the aid of ion exchange resin 

Amber& IR 120 [H+] in water to give a mixture of 6-axido-6deoxy-D-glucose (S)t6 and 6-axido-6- 

deoxy-D-f (6)11b*16c, from which the less polar fructose derivative 6 could be isolated as a 

syrup by careful chromatographic separation17 in 62% yield. Crystalline 6-axido-6-deoxy-D-glucose 5 was 

obtained in 64% yield. Compound 6 was reductively cyclixed by hydrogenation in methanol/water in the 

presence of palladium-on-carbon to give after conventional purification on Amberlite CG 50 the desired 

l,Sdideoxy-1,5-imino-D-mannitol 1 in 78% yield. The NMR spectroscopic features of this material were 

in perfect agreement with published data=*c@,ll” and the spectra of the corresponding hydrochloride 

were identical with those obtained from an authentic sample (SIGMA D-9160). No evidence for 

concomitant formation of the corresponding L@O epimer could be found on the basis of tH NMR- 

spectroscopY. 
By this sequence ldeoxymannonojirimycin (1) was obtained in four steps from sucrose (2) in an 

average overall yield of 27% 18. 

Initial attempts to utilize axidodeoxyaldose 5, the “isomeric ballast” of the above sequence, by 

conversion into axidodeoxyketose 6 via an acid- or base-catalyzed Lobry de Bruyn - Alberda van 

Bkenstein rearrangement19 did not meet any satisfying success employing acetic and trifluoroacetic acid as 
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well as a variety of bases, such as pyridine, quinoline, calcium hydroxide and ammonia in various 

concentrations (all of which had been previously used my in such rearrangement reactionsta”). 

As an alternative, a biochemical approach was invea@ted employing glucose isomemm, EC. 5.3.1.5, 

for the required transformation. This industtially very important enzyme for the large scale conversion of 

glucose into glucose/fructose syrup has also been demonstrated to isomerize 6deoxy- as well as 6-G 

methyl-B-glucose into the corresponding ~-fructose derivatives, albeit in lower yields (15 and 2196, 

respectively) than the parent compound (over 40%)20. 

In a typical experiment a 30% solution of glucose derivative 5 (8-10 g) in distilled water (containmg 

10 mg magnesium sulfate and adjusted to pH 8.4 with sodium carbonate) was shaken at 60 Oc for 60 h 

with polymer supported glucose isomerase (SWEET’ZYMB T, 2.5 g) to give a mixture containing 

approximately 15% (estimated from NMR spectra) of the desired product 6. After tiltration and removal 

of the solvent under reduced pressure compound 6 could be obtained in 8-1046 yield by chromatographic 

sepamtion. Two recycling steps with recovered starting material 5 led to a total yield of 25% of fructose 

derivative 6 from this isomerization reaction (about 50% “by recovery”). Conventional hydrogenation 

gave an additional crop of compound 1 (7-S% overall) increasing the total yield of this convergent l- 

deoxymsnnonojirimycin synthesis to 35 4621. 
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