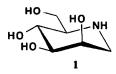
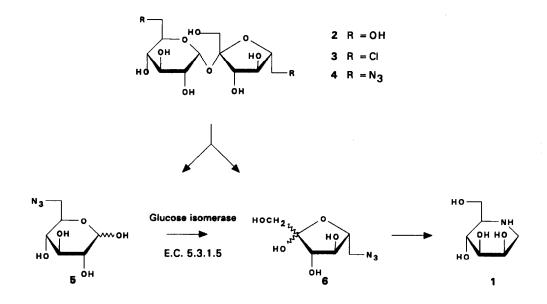
A Simple Convergent Synthesis of the Mannosidase Inhibitor 1-Deoxymannonojirimycin from Sucrose


Anna de Raadt and Arnold E. Stütz*

Institut für Organische Chemie der Technischen Universität Graz, Stremayrgasse 16, A-8010 Graz, Austria

Key Words: 1-deoxymannonojirimycin, mannosidase inhibitor, glucose isomerase, sucrose, synthesis


Abstract: The glycosidase inhibitor 1-deoxymannonojirimycin (1,5-dideoxy-1,5-imino-D-mannitol) was synthesized in four simple steps from sucrose via 6,6'-diazido-6,6'-dideoxysucrose and 6-azido-6-deoxy-Dfructofuranose. The "isomeric ballast" of the sequence, 6-azido-6-deoxy-D-glucose, could be partially converted into 6-azido-6-deoxy-D-fructofuranose with the aid of glucose isomerase (E.C. 5.3.1.5) demonstrating a novel synthetic application of this enzyme. The sequence allows access to multigramm quantities of 1-deoxymannonojirimycin in over 30% overall yield without the need for expensive reagents and protecting group manipulations.

1-Deoxymannonojirimycin (1,5-dideoxy-1,5-imino-D-mannitol, 1), a natural product first found in the legumes *Lonchocarpus sericeus* and *L. costaricensis*¹, is an inhibitor of several mannosidases², amongst them mannosidases 1A and 1B of glycoprotein processing³, an efficient inhibitor of mammalian α -fucosidase⁴, and thus a valuable tool in biochemical research.

For syntheses of 1, D-mannose^{2,5} and D-glucose^{5b,6} have been the most frequently employed starting materials. However, L-gulonolactone⁷, (S)-pyroglutamic acid⁸, and other compounds⁹ have also been used. Chemoenzymatic approaches have been published by three groups^{5a,10,11}, two of them taking advantage of an enzymatic aldol reaction^{10,11}. Of the reasonably efficient syntheses the numbers of synthetic steps lie between 6 and 14 with overall yields ranging from 5 to about 25%. The best overall yield to date (35% over 11 steps) was reported by Fleet and coworkers^{6c} for a synthesis of 1 from 1,2;5,6-di-O-isopropylidene- α -D-glucofuranose.

In context with a project concerned with the synthesis of biologically active derivatives of various glycosidase inhibitors we were interested in a simple approach to 1 allowing relatively quick access to multigramm quantities without the need for expensive reagents such as trifluoromethanesulfonic anhydride. Based on the pioneering work by Paulsen and coworkers¹² 6-azido-6-deoxy-D-fructofuranose had already been successfully used^{10,11} as an intermediate for the synthesis of 1. Consequently we turned our attention to sucrose (2) as an inexpensive, abundant source of D-fructose, the latter already protected at the anomeric centre and as the required 2,5-furanoside to allow access to C-6.

Commercially available sucrose 2 (51 g, 150 mmol) was treated with triphenylphosphine/ tetrachloromethane in pyridine employing the method of Anisuzzaman and Whistler¹³, to give 6,6'-dichloro-6,6 '-dideoxysucrose (3)^{13,14}, albeit as a syrup. The yields in our experiments ranged between 65 and 75%, unfortunately never reaching that (92%) previously reported for this reaction. Reaction of sucrose derivative 3 with sodium azide in N,N-dimethylformamide (DMF) led directly and without the need for protecting group manipulations to the known 6,6'-diazido-6,6'-dideoxysucrose (4)^{14,15} in 81% yield (57% for both steps). This product was quantitatively hydrolyzed with the aid of ion exchange resin Amberlite IR 120 [H+] in water to give a mixture of 6-azido-6-deoxy-D-glucose (5)¹⁶ and 6-azido-6deoxy-D-fructofuranose (6)^{11b,16c}, from which the less polar fructose derivative 6 could be isolated as a syrup by careful chromatographic separation¹⁷ in 62% yield. Crystalline 6-azido-6-deoxy-D-glucose 5 was obtained in 64% yield. Compound 6 was reductively cyclized by hydrogenation in methanol/water in the presence of palladium-on-carbon to give after conventional purification on Amberlite CG 50 the desired 1,5-dideoxy-1,5-imino-D-mannitol 1 in 78% yield. The NMR spectroscopic features of this material were in perfect agreement with published data^{5d,5e,6b,11b} and the spectra of the corresponding hydrochloride were identical with those obtained from an authentic sample (SIGMA D-9160). No evidence for concomitant formation of the corresponding L-gulo epimer could be found on the basis of ¹H NMRspectroscopy.

By this sequence 1-deoxymannonojirimycin (1) was obtained in four steps from sucrose (2) in an average overall yield of $27\%^{18}$.

Initial attempts to utilize azidodeoxyaldose 5, the "isomeric ballast" of the above sequence, by conversion into azidodeoxyketose 6 via an acid- or base-catalyzed Lobry de Bruyn - Alberda van Ekenstein rearrangement¹⁹ did not meet any satisfying success employing acetic and trifluoroacetic acid as

well as a variety of bases, such as pyridine, quinoline, calcium hydroxide and ammonia in various concentrations (all of which had been previously used successfully in such rearrangement reactions^{19b}). As an alternative, a biochemical approach was investigated employing glucose isomerase, E.C. 5.3.1.5, for the required transformation. This industrially very important enzyme for the large scale conversion of glucose into glucose/fructose syrup has also been demonstrated to isomerize 6-deoxy- as well as 6-O-methyl-D-glucose into the corresponding D-fructose derivatives, albeit in lower yields (15 and 21%, respectively) than the parent compound (over 40%)²⁰.

In a typical experiment a 30% solution of glucose derivative 5 (8-10 g) in distilled water (containing 10 mg magnesium sulfate and adjusted to pH 8.4 with sodium carbonate) was shaken at 60 °C for 60 h with polymer supported glucose isomerase (SWEETZYME T, 2.5 g) to give a mixture containing approximately 15% (estimated from NMR spectra) of the desired product 6. After filtration and removal of the solvent under reduced pressure compound 6 could be obtained in 8-10% yield by chromatographic separation. Two recycling steps with recovered starting material 5 led to a total yield of 25% of fructose derivative 6 from this isomerization reaction (about 50% "by recovery"). Conventional hydrogenation gave an additional crop of compound 1 (7-8% overall) increasing the total yield of this convergent 1-deoxymannonojirimycin synthesis to $35\%^{21}$.

Acknowledgments: We thank Dipl.-Ing. Vera Grassberger for recording some of the NMR-spectra as well as T. Dielacher and O. Redl for technical assistance. We are indebted to Ms. B. Zaponig (*Novo Nordisk A/S* Information, Vienna) for supplying information on SWEETZYME T as well as to *Novo Nordisk A/S*, Denmark, for the generous gift of this enzyme.

References and Notes

- ¹ Fellows, L. E.; Bell, E. A.; Lynn, D. G.; Pilkiewicz, F.; Miura, I.; Nakanishi, K. J. Chem. Soc., Chem. Commun. 1979, 977-978.
- ² Legler, G.; Jülich, E. Carbohydr. Res. 1984, 128, 61-72.
- ³ Fuhrmann, U.; Bause, E.; Legler, G.; Ploegh, H. Nature 1984, 307, 755-758.
- 4 Evans, S. V.; Fellows, L. E.; Shing, T. K. M.; Fleet, G. W. J. Phytochemistry 1985, 24, 1953-1955.
- a) Kinast G.; Schedel, M. Angew. Chem. 1981, 93, 799-800; b) Fleet, G. W. J.; Gough, M. J.; Shing, T. K. M. Tetrahedron Lett. 1984, 25, 4029-4032; c) Bernotas, R. C.; Ganem, B. Tetrahedron Lett. 1985, 26, 1123-1126; d) Setoi, H.; Takeno, H., Hashimoto, M. Chem. Pharm. Bull. 1986, 34, 2642-2645; e) Broxterman, H. J. G.; Neefjes, J. J.; van der Marel, G. A.; Ploegh, H. L.; van Boom, J. H. J. Carbohydr. Chem. 1988, 7, 593-603.
- a) Fleet, G. W. J.; Smith, P. W. Tetrahedron Lett. 1985, 26, 1469-1472; b) Fleet, G. W. J.;
 Fellows, L. E.; Smith, P. W. Tetrahedron 1987, 43, 979-990; c) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 327-336.
- 7 Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 319-326.
- ⁸ Ikota, N. Heterocycles 1989, 29, 1469-1472.
- ⁹ Leontein, K.; Lindberg, B.; Lönngren, J. Acta Chem. Scand. B 1982, 36, 515-518.
- Pederson, R. L.; Kim, M.-J.; Wong, C.-H. Tetrahedron Lett. 1988, 29, 4645-4648; Pederson, R. L.; Wong, C.-H. Heterocycles 1989, 28, 477-480; von der Osten, C. H.; Sinskey, A. J.; Barbas, C. F., III; Pederson, R. L.; Wang, Y.-F.; Wong, C.-H. J. Am. Chem. Soc. 1989, 111, 3924-3927.

- 11 a) Ziegler, T.; Straub, A.; Effenberger, F. Angew. Chem. 1988, 100, 737-738; b) Straub, A.; Effenberger, F.; Fischer, P. J. Org. Chem. 1990, 55, 3926-3932.
- ¹² Paulsen, H.; Sangster, I.; Heyns, K. Chem. Ber. 1967, 100, 802-815; Paulsen, H.; Todt, K. Adv. Carbohydr. Chem. 1968, 23, 115-232 and ref. cited therein.
- 13 Anisuzzaman, A. K.; Whistler, R. L. Carbohydr. Res. 1978, 61, 511-518.
- ¹⁴ Hough, L.; Mufti, K. S. Carbohydr. Res. 1972, 25, 497-503.
- ¹⁵ Almquist, R. G.; Reist, E. J. Carbohydr. Res. 1976, 46, 33-41; Almquist, R. G.; Reist, E. J. J. Med. Chem. 1977, 20, 1246-1250; Khan, R.; Lal, B. C.; Mufti, K. S.; Ienner, M. R. Carbohydr. Res. 1980, 78(1), 185-189. Sharma, N. K.; Norula, J. L.; Mattey, S. K. J. Indian Chem. Soc. 1982, 59, 385-388.
- a) Christensen, J. E.; Goodman, L. Carbohydr. Res. 1968, 7, 510-512; b) Hanessian, S. J. Org. Chem. 1969, 34, 675-681; c) Durrwachter, J. R.; Wong, C.-H. J. Org. Chem. 1988, 53, 4175-4181.
- Silica gel 60, 230-400 mesh (MERCK 9305); petroleum ether/ethyl acetate 1:3, v/v or dichloromethane/methanol 20:1, v/v, followed by ethyl acetate or ethyl acetate/ethanol/water 45:5:2, v/v/v; TLC on MERCK 5554 precoated sheets, ethyl acetate/methanol 7:1, v/v.
- 18 In a typical sequence compound 3 (40 g, 105 mmol) was stirred with sodium azide (70 g, 10 equ.) in DMF (400 mL, 100 °C, 16 h). After removal of the salts the solution was concentrated under reduced pressure and the residue chromatographed on silica sel (netroleum ether/ethyl acetate 1.3).

could no longer be detected by TLC. After filtration the solvent was removed *in vacuo* followed by chromatography¹⁷ of the syrupy residue to give 10.7 g (62%) essentially pure 6-azido-6-deoxy-D-fructofuranose (6), several mixed fractions and pure 6-azido-6-deoxy-D-glucose 5 (11 g, 64%). A 10% solution of compound 6 (10 g, 49 mmol) in methanol/water (1:1, v/v) was hydrogenated on a PARR-apparatus (600 mg Pd/C 5%, 4 bar H₂,72 h). After removal of the catalyst the solvent was evaporated under reduced pressure and the residue purified on Amberlite CG 50 (0.05-0.1 M aqueous ammonia as eluent). Crystallization from methanol/diethyl ether gave 5.7 g (78%) pure 1-deoxymannonojirimycin (1).

Mixed fractions of compounds 5 and 6 from the hydrolysis of 4 can be recycled.

- a) Lobry de Bruyn, C. A.; Alberda van Ekenstein, W. Rec. Trav. Chim. Pays-Bas 1895, 14, 203;
 b) Speck, J. C. Adv. Carbohydr. Chem. Biochem. 1958, 13, 63-103.
- 20 Bock, K.; Meldal, M.; Meyer, B.; Wiebe, L. Acta Chem. Scand. B 1983, 37, 101-108.
- Physical and spectral data of compounds confirm the structures proposed and are in full agreement with published values. NMR Spectra were recorded on a BRUKER MSL 300 spectrometer at 300 MHz (¹H) and 75.47 MHz (¹³C). Selected data: 4: ¹³C NMR (in D₂O, δ in ppm): 104.9 (C-2[']), 93.2 (C-1), 80.9 (C-4[']), 77.6, 76.6 (C-3['], 5[']), 73.5, 72.3, 72.2, 71.5 (C-2,3,4,5), 62.5 (C-1[']), 54.1, 52.4 (C-6,6[']). 5: mp 128-133 °C; 5α: ¹³C NMR: 93.1 (C-1), 73.6, 72.4, 71.5 (C-2,3,5), 71.1 (C-4), 51.9 (C-6); 5β: 97.0 (C-1), 76.5, 75.4, 75.1 (C-2,3,5), 71.4 (C-4), 51.9 (C-6); ¹H NMR (D₂O, δ in ppm): 5.16 (d, H-1α, J_{1,2} 3.6 Hz), 4.59 (d, H-1β, J_{1,2} 7.9 Hz); 5α:5β, 2:3.
 6: [α]_D +20 (c 0.6, water); 6β: ¹³C NMR: 102.7 (C-1), 79.9 (C-5), 75.9 (C-3,4), 63.5 (H-1), 53.4 (H-6).

(Received in Germany 12 August 1991)